Lagrange-type modeling of continuous dielectric permittivity variation in double-higher-order volume integral equation method
نویسندگان
چکیده
A novel double-higher-order entire-domain volume integral equation (VIE) technique for efficient analysis of electromagnetic structures with continuously inhomogeneous dielectric materials is presented. The technique takes advantage of large curved hexahedral discretization elements—enabled by double-higher-order modeling (higher-order modeling of both the geometry and the current)—in applications involving highly inhomogeneous dielectric bodies. Lagrange-type modeling of an arbitrary continuous variation of the equivalent complex permittivity of the dielectric throughout each VIE geometrical element is implemented, in place of piecewise homogeneous approximatemodels of the inhomogeneous structures. The technique combines the features of the previous double-higher-order piecewise homogeneous VIE method and continuously inhomogeneous finite element method (FEM). This appears to be the first implementation and demonstration of a VIE method with double-higher-order discretization elements and conformal modeling of inhomogeneous dielectric materials embedded within elements that are also higher (arbitrary) order (with arbitrary material-representation orders within each curved and large VIE element). The new technique is validated and evaluated by comparisons with a continuously inhomogeneous double-higher-order FEM technique, a piecewise homogeneous version of the double-higher-order VIE technique, and a commercial piecewise homogeneous FEM code. The examples include two real-world applications involving continuously inhomogeneous permittivity profiles: scattering from an egg-shaped melting hailstone and near-field analysis of a Luneburg lens, illuminated by a corrugated horn antenna. The results show that the new technique is more efficient and ensures considerable reductions in the number of unknowns and computational time when compared to the three alternative approaches.
منابع مشابه
Higher-order Vsie-mom Formulation for Scattering by Composite Metallic and Dielectric Objects
A new higher-order method of moment (MoM) technique is presented for volume-surface integral equations (VSIE) for electromagnetic modeling of composite metallic and dielectric objects. The higher-order MoM scheme comprises higher-order hierarchical Legendre basis functions and an accurate representation of the object by higher-order curvilinear elements. Due to the orthogonal nature of the basi...
متن کاملImpedance Analysis of Printed Antenna on Three-Dimensional High-Permittivity Dielectric Substrate Using Mixed-Domain MoM
An integral equation approach with a new solution procedure using moment method (MoM) is applied for the computation of coupled currents on the surface of a printed dipole antenna and inside its high-permittivity three-dimensional dielectric substrate. The main purpose of this study is to validate the accuracy and reliability of the previously proposed MoM procedure by authors for the solution ...
متن کاملAccurate Analysis of Dielectric Backed Planar Conducting Layers of Arbitrarily Shaped in a Rectangular Waveguide
The characteristics of dielectric backed planar conducting layers of arbitrarily shaped in a rectangular waveguide are calculated by means of coupled integral equation technique (CIET) which accurately takes higher order mode interactions. Equivalent structures for the accurate analysis whole structure are introduced in which magnetic surface currents are identified as the unknowns at the apert...
متن کاملMinimal Mean-Curvature-Variation Surfaces and Their Applications in Surface Modeling
Physical based and geometric based variational techniques for surface construction have been shown to be advanced methods for designing high quality surfaces in the fields of CAD and CAGD. In this paper, we derive a Euler-Lagrange equation from a geometric invariant curvature integral functional–the integral about the mean curvature gradient. Using this Euler-Lagrange equation, we construct a s...
متن کاملRevised Manuscript R2 WITHOUT Highlighting Changes WITH biographies
Abstract—A novel diakoptic method based on volume integral equation (VIE) modeling of subsystems is proposed for 3-D electromagnetic analysis. The theoretical foundation of the method are the surface and volume equivalence principles, as it combines the VIE and surface integral equation (SIE) formulations, in conjunction with the method of moments (MoM). The method breaks the original structu...
متن کامل